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Determining boride layer thicknesses formed on XC38 steel  
with artificial neural network 

ABSTRACT 

Boride layers result from surface treatments of materials, offering valuable mechanical and 
tribological aspects that extend the material's life expectancy and potential. They are achieved by 
a process known as boriding in which boron atoms are diffused into the material until saturation, 
where a layer that may be mono or dual-phased begins to thicken over time depending on the 
period of treatment, the temperature held, the media applied, the composition of the material with 
its impurities, and more. Due to the difficulty of encompassing all those different parameters that 
influence the kinetic evolution of that boride layer, the idea was to start by training an artificial 
neural network to estimate its thickness with only two variables and inspect the results. Three 
experimental observations out of nine were used as validating data, while the rest were training 
data, along with others added. Depending on the reliability of the predictions given by the artificial 
neural network, further research can explore the possibilities of training it on different samples and 
environments through data mining. 
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1. INTRODUCTION 

Boriding has grown significantly as a surface 
treatment method for various materials, such as 
steels, superalloys, and other metal alloys. 
Researchers are continually working to optimize 
the processes to improve the properties of the 
boride layer. 

Some recent studies have focused on using 

computational simulations to predict the evolution 

of the boride layer [1,2], as well as experimental 

investigations [3] to validate the results and 

understand the factors of the phenomenon. 

Machine learning is one of the computational 

techniques with great potential in predictions. 

Genel et al. [4] have predicted, with high 

precision by an artificial neural network, the 

hardness and depth of the boride layer of AISI W1 

steel even better than regression models. The layer 

of the borided steel was explored using heat 

treatment powder boriding at different temperatures  
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and periods, and the analysis confirmed the 
existence of a two-phased layer consisting of FeB 
and Fe2B borides on the steel surface. 

The study of Campos et al. [5] evaluated the 
growth kinetics of the mono-phased boride layer 
Fe2B in AISI 1045 steel using neural networks and 
least square techniques through the paste boriding 
process. The reliability of these techniques was 
compared with experimental results, resulting in 
mean errors of 5.31 and 3.42 %, respectively. It 
was concluded that the models used have the 
advantage of minimizing the error percentage for 
the thickness of the iron boride layer compared to 
deterministic models, which may go up to 30 %. 

Liu and Zhang [6] discussed and adopted a 
neural network system to predict the performance 
of solid boriding. The system overcomes the 
limitations of traditional approaches and offers a 
stable and efficient method for predicting the 
diffusion layer in solid boriding.  

Rayane and Allaoui [7] debated the usage of 

an artificial neural network technique to predict the 

thickness of boride layers on XC38 steel achieved 

through boriding treatment in different molten salts. 

The model provided good precision in predicting 

the depth of the boride layer for the different molten 

salts, with the highest performance attained using 

normalized values. 
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Mebarek et al. [1] have simulated the growth 
kinetics of the boride layer on the same data used 
in this paper, XC38 steel substrate that was 
borided within a liquid medium, with a network of 
artificial neurons to predict the thickness of that 
boride layer and the characteristics of the kinetics 
of the process. 

Mota-Hernandez et al. [8] provided valuable 
insights into the application of neural networks in 
materials science and engineering, where it was 
possible to assess the fracture toughness of 
borided steels. Different neural network models 
were analyzed and applied with errors of 5 % on 
both compared to experimental data of the fracture 
toughness of the iron boride layer. 

Mebarek and Keddam [9] presented a 

simulation approach model based on a fuzzy 

neural network to estimate the thickness of FeB 

and Fe2B bi-phased layers in the boriding process. 

The model combines fuzzy logic and neural 

network techniques and is validated using 

experimental data, showing good agreement with 

the results obtained. While in [10], they developed 

a model based on the artificial neural network for 

the boriding process of the AISI 316L stainless 

steel. The developed model simulates the boriding 

process of the studied material, and it successfully 

predicted the layer's thickness with an average 

error of 1-1.25 μm. 

In this work, a model that uses an artificial 

neural network is used to determine the evolution 

of the boride layer thickness formed on XC38 steel 

when borided. In doing so, an artificial neural 

network is given only two variables, temperature 

and time, and applied to nine observed layer 

thicknesses, along with others added, as working 

data from which it can predict unseen outcomes. 

To validate the effectiveness of those predictions 

and their precision, they are compared to another 

established model, the diffusion model [11], which 

uses more variables in addition to the two used in 

the proposed model. 

2. ARTIFICIAL NEURAL NETWORKS 

Researchers observed the human brain, the 

root of thoughts and learning, and focused on its 

foundational unit, the neuron, with its thousands of 

connections forming a network. As illustrated in 

Figure 1, a neuron receives information with the 

dendrites from a preceded cell and then sends it to 

another with its terminal after processing it. The 

connection between a dendrite and a terminal 

forms a synaptic that is dynamically strengthened 

or weakened based on how often it is being used 

[12]. 

 

Figure 1. Illustration of a biological neuron structure 

 

Each received information is referred to as an 

input and is weighed by that synapse's strength. 

The result is a bunch of information that is summed 

in the cell body and transformed into a signal 

transferred through the axon and sent to another 

synaptic connection or a cell as an output [12]. 

Inspired by that, the idea of machine learning 

came, where a similar structure is constructed, 

Figure 2, resulting in an artificial neuron 

characterized as a transfer function or activation 

function that provides the desired outputs based on 

inputs evaluated through weights and biases. In the 

middle of the structure, multiple neurons can be 

introduced, constituting one or multiple hidden 

layers, each having its own bias. An output layer 

follows the last hidden layer, and each layer needs 

a transfer function to estimate the proceeded 

outputs [12-14]. 

 

Figure 2. Structure of artificial neurons 

 

Artificial neural networks differ in the 

connections between the neurons of each layer 

and the network structure. In this study, the feed-

forward network back-propagation type is picked. 

The first part of the naming, feed-forward, is due to 

the absence of connections between neurons 

within a layer and connections that transmit data 

between layers in the opposite direction [14], while 

the second part, back-propagation, is due to a 

computation of the steepest gradient descent, 

which helps find the minimum error by adjusting 

weights in the direction that minimizes the overall 

error [12]. 



Y. El Guerri et al. Determining boride layer thicknesses formed on XC38 steel ... 

ZASTITA MATERIJALA 65 (2024) broj 3 536 

Following the structural choice, the training 

function is picked where two types were 

investigated, the Levenberg-Marquardt and the 

Bayesian Regularization functions [12]. Between 

both, the Levenberg-Marquardt function gave 

decent results in terms of mean squared errors, 

while sometimes it gave unfitted results. 

Additionally, its predictions were shifting a lot from 

one training to another. On the other hand, the 

Bayesian Regularization gave the finest and fittest 

results while staying stable in each execution. Both 

methods use the Jacobian for calculations, for 

which the performance function was set as the 

mean squared error (MSE). 

 

Figure 3. Schematization of the trained artificial neural network 

 

For the training, two layers were computed, the 

last as an output layer and the first being the 

hidden layer with a different set of neurons. The 

transfer functions used in the layers were the 

Sigmoid function, equation (1), from the hidden 

layer to the output layer, and the Linear function, 

equation (2), from the output layer to the outputs. 

Furthermore, by using both functions, the artificial 

neural network weighs two inputs, treatment time t 
and temperature T, and then, with its structure, it 

estimates a single output, the boride layer 

thickness u. Within the hidden layer, different sets 

of neurons give different results, from bad to great 

predictions, but after trial and error, an optimal set 

can be achieved. In this case, the optimal 

configuration was with nine neurons, as illustrated 

in Figure 3. 

𝑓1 (𝑛) =
1

1+𝑒−𝑛 (1) 

𝑓2 (𝑛) = 𝑛 (2) 

3. EMPIRICAL DATA 

After establishing the structure and the 
parameters of the artificial neural network, it is 
given data to train on. The data provided were 
those of boriding processes experimented on an 
XC38 steel. The process had nine experimenta-
tions, 2, 4, and 6 hours of treatment times, each at 
different temperatures, 850, 950, and 1000 
degrees Celsius. At the end of each process, with a 
light microscope, the boride layer thickness was 
determined [11], Figure 4. In addition to those nine 
observations, four others were added, the 
beginning of experiments having nonexistent 
boride layer thicknesses, from 850 to 1000 by 50 
degrees Celsius, resulting in thirteen data sets. 

Subsequently, three of the nine observed data, 
2, 4, and 6 hours at 950 degrees Celsius were 
used as validating data, while the rest were training 
data. The artificial neural network estimates its 
performance by validating data and takes the best 
weights and biases for hyper-tuning to establish the 
model. 
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Figure 4. Data of the empirical boride layer thickness with respect to temperature and time [11] 

 

4. RESULTS 

After establishing the parameters that the 
artificial neural network relies on to edify itself and 
the data inputs and outputs that it trains and 

validates with, it has been launched on a thousand 
epochs for each set number of neurons, finding, as 
stated previously, the nine-neuron configuration 
having the best results, Figure 3. 

 

Figure 5. Performance plot of the mean squared error 
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As of all artificial neural network training, as 
elucidated in Figure 5, in the given epochs, the 
gradient decent at the beginning under the 
hundredth epoch of the training is remarkable, 
which means that the artificial neural network is 
adapting to the data. Following that, it stabilizes, 
and in the 56th epoch, there is an alteration, and 
the best validation performance is reached. 

After training the artificial neural network, it is 
given two inputs, time t and temperature T, from 
which it determines the boride layer thicknesses 
accordingly. The predictions are enumerated in 
Table 1, with those of a diffusion model published 
in a previous research paper [11], to test whether 
the specified trained artificial neural network is 
comparable. 

 

Table 1. Boride layer thickness values of both models 

𝐓 [°𝐂] 
𝐭 [𝐡] 

2 4 6 

850 23.41 33.11 40.55 

950 53.22 75.26 92.17 

1000 76.68 108.44 132.82 

[𝛍𝐦] 
𝐮𝐃 

𝐮𝐀 

850 20.20 29.72 38.12 

950 52.72 77.33 94.51 

1000 73.88 108.45 127.49 

 

From the given results of Table 1, the results of 
the boride layer thickness obtained from the trained 
artificial neural network uA seem close to those of 

the diffusion model uD. 

Consequently, an extrapolation of the trained 
artificial neural network is investigated by plotting, 
as in Figure 6, the diffusion kinetics throughout the 
treatment time. 

 

Figure 6. Simulation of the boride layer thickness over time in both models 

Extrapolating the artificial neural network's 
predictions from the beginning until 8 hours of 
treatment provided promising results, more 
favorable than those of the diffusion model, as 
seen in Figure 6. Hence, it can be said that the 

artificial neural network has the potential to 
describe the kinetics of boride layer thicknesses 
even though it used only two variables, time t and 

temperature T. Moreover, the predictions of each 
model's residuals are provided in Figure 7. 
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5. RESIDUAL ANALYSIS 

This section is dedicated to the accuracy 
difference between both models regarding the 
empirical data, where a better perception of their 
conformity is given, along with two statistical 
metrics. The first metric is the mean squared error 
(MSE), equation (3), where we can get the average 
squared loss between the estimated boride layer 
thicknesses and the experimental ones. The 
second metric is the mean absolute error (MAE), 
equation (4), which is generally less sensitive to 

one or two significant errors in the data set, making 
it more robust to outliers than the mean squared 
error [12]. 

𝑀𝑆𝐸 =
1

𝑛
∑ ( 𝑢𝑖  −  �̂�𝑖  )

2𝑛
𝑖=1  (3) 

𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑢𝑖 −  �̂�𝑖  |

𝑛
𝑖=1  (4) 

Where: ui experimental layer thicknesses, ûi 

estimated layer thicknesses, n data set number. 

 

 

 

Figure 7. Graph of conformity between both models and the experimental data 

 

With each model's simulated boride layer 

thicknesses plotted against the actual experimental 

data in Figure 7, it is seen that the artificial neural 

network's estimations conform better than those of 

the diffusion model to the experiments, and in 

consequence, the validation of the efficiency of the 

artificial neural network model regarding the 

observed experiments. 

Other than that, the starting data points when 

the treatment time is null are ignored for the 

statistical metrics, and two comparisons are given: 

the first being the nine experimental data and the 

second only the validating data (the three empirical 

points of the 950 degrees Celsius). 

Table 2 presents that if a comparison were to 

be done using the experimental data points, all the 

statistical metrics would be way better in the 

artificial neural network due to the training of the 

artificial model on the non-validating points, i.e., the 

other six observed data. Thus, taking only the three 

validating data would be less biased, and even with 

that, it is clear that the artificial neural network 

performs nearly twice as well as the diffusion 

model in both the statistical metrics measured. 
 

Table 2. Accuracy metrics for both the artificial 
neural network and the diffusion model 

 All data points Validating points 

[𝛍𝐦] 𝐌𝐒𝐄  𝐌𝐀𝐄 𝐌𝐒𝐄  𝐌𝐀𝐄 

𝐮𝐃 9.335 2.811 9.337 2.927 

𝐮𝐀 1.176 0.746 3.236 1.512 
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6. INPUT-OUTPUT RELATIONSHIP 

Lastly, the trained artificial neural network is 
used to cover the inside of the studied domain of 
data, from 850 to 1000 degrees Celsius for two to 
six hours of treatment time, in a three-dimensional 
graph, Figure 8, of the boride layer thickness as a 
function of temperature and time to see if the 
artificial neural network could cover the relationship 
between the variables, inputs, and the results, 

outputs, by providing correct material science 
insights. 

After obtaining the resulting domain, the 
empirical data are scattered within it, as seen in 
Figure 8. For a relationship breakdown between 
the inputs and outputs, three more graphs of each 
side view of the 3D graph are illustrated in Figures 
9, 10, and 11. 

 

Figure 8. 3D predictions of boride layer thickness in a domain of 2 to 6 h at 850 to 1000 °C 

 

Figure 9. Boride layer thickness against time in a side view of the predicted domain 
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The first side view, Figure 9, resembles the one 
in Figure 6, where the kinetic of the boride layer 
thickness is represented over time. It can be seen 
that there is a slow, nearly linear evolution of the 
boride layer thickness at the lowest temperature 
(850 degrees Celsius). In comparison, in the 
highest temperature (1000 degrees Celsius), the 
evolution at first is notable but decreases over time. 
Those evolutions confirm the initial influence of the 
temperature in the first stages of the diffusion of the 
boron atoms into the substrate, where the boride 
layer thickness increases rapidly in high 
temperatures compared to lower ones. However, 
over time, both evolutions seem to linearize. 

The second side view, Figure 10, portrays 
slight inaccuracies in the middle with the empirical 
data and characterizes the impact of the time on 
the boride layer thickness. The extremes of the 
domain, the bottom and upper limits, represent two 
and six hours of treatment times at different 
temperatures, respectively. 

For a fixed temperature in Figure 9, the 
evolution of the boride layer decreases over time, 
unlike in Figure 10, where the evolution of the 
boride layer increases for a fixed treatment time. 
Thus, it can be said that the temperature has a 
more significant influence than the treatment time. 

 

Figure 10. Boride layer thickness against temperature in a side view of the predicted domain 

 

Figure 11. Evolution of the boride layer thickness in an iso thickness diagram 
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From the top view, Figure 11, the graph gives 

different boride layer thicknesses for each chosen 

temperature and time, known as the iso-thickness 

diagram. It is consistent with the literature, where 

for a fixed boride layer thickness, temperature 

decreases with the increase of the treatment time. 

As an example, highlighted in white at the bottom 

of the graph, boriding for 4 hours at 850 degrees 

Celsius gives roughly the same boride layer 

thickness as boriding for 2 hours at nearly 885 

degrees Celsius. 
 

7. CONCLUSION 

Training functions used by artificial neural 

networks are not all suitable for training on the 

kinetics of the boride layer thicknesses. This 

inference was reached from the trial and error in 

establishing the model, where it was observed that 

the Levenberg-Marquardt function gave 

approximate results in some executions but 

diverged in most others, contrary to the stability 

and accuracy of the Bayesian Regularization 

function. 

Knowing that the phenomenon is not chaotic 

and has physical sense, taking limited data points 

can be sufficient, as it has been shown, where 

despite taking only two variables, the determination 

of the boride layer thickness was comparable to the 

diffusion model, which uses more variables to be 

established. 

In contrast, the artificial neural network grasped 

the relationship and impact of the variables, 

representing the temperature's influence as more 

significant than that of the treatment time. 

Additionally, it can even provide the iso-thickness 

diagram, which is an essential industrial graph. 

Moreover, the artificial neural network has the 

potential to significantly contribute to the kinetic 

studies of boride layers due to its observed 

performance in predicting their thicknesses. Thus, 

further investigations can be carried out on other 

data substrates with mono-phase Fe2B and dual-

phase FeB/Fe2B layers or even variables such as 

boron content, hardness, wear, and others, 

depending on the availability of the empirical data. 
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IZVOD 

ODREĐIVANJE DEBLJINA BORIDNOG SLOJA FORMIRANOG NA ČELIKU XC38 
SA UMETNUTOM NEURONSKOM MREŽOM 

Boridni slojevi su rezultat površinske obrade materijala, nudeći vrijedne mehaničke i tribološke 
aspekte koji produžuju životni vijek i potencijal materijala. Oni se postižu postupkom poznatim kao 
borenje u kojem se atomi bora difundiraju u materijal do zasićenja, gdje sloj koji može biti 
jednofazni ili dvofazni počinje da se zgušnjava tokom vremena u zavisnosti od perioda tretmana, 
održane temperaturi, medija primijenjen, sastav materijala sa njegovim nečistoćama, i još toga. 
Zbog poteškoće da se obuhvate svi oni različiti parametri koji utiču na kinetičku evoluciju tog 
boridnog sloja, ideja je bila da se počne obučavanjem veštačke neuronske mreže da proceni svoju 
debljinu sa samo dve varijable i pregleda rezultate. Tri eksperimentalna zapažanja od devet 
korištena su kao validacijski podaci, dok su ostali bili podaci o obuci, zajedno s ostalim dodanim. 
Ovisno o pouzdanosti predviđanja koje daje umjetna neuronska mreža, daljnja istraživanja mogu 
istražiti mogućnosti njezine obuke na različitim uzorcima i okruženjima kroz rudarenje podataka. 
Ključne riječi: Mašinsko učenje, umjetna neuronska mreža, debljina sloja, boridni slojevi, 
boronizacija 
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