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Application of Padé approximation: Chronoamperometric 
current for flash photolytic processes at a planar electrode 

 

A Padé approximation of current in rapid photolytic processes at a planar electrode is 
derived. The model is based on non stationary diffusion equation containing a non-linear 
term related to flash photolytic processes. The derivation is given for a planar electrode.  An 
excellent agreement with the previous analytical results is noted. 
Key words: Non-linear diffusion equation, Padé approximation, photolytic processes, 
planar electrodes. 
 

1. INTRODUCTION 

Non-linear reaction-diffusion models and their 
study arise in various contexts.  Among them 
mention may be made of polymer modified 
ultramicroelectrodes [1], homogeneous mediated 
enzyme catalyzed reaction [2], electrodes modified 
with multi layered enzyme system [3], electrodes 
modified with nanostructure porous film [4], and 
rapid photolytic processes [5-7] etc. Therefore 
these models have been the subject of intense 
theoretical, numerical and experimental study over 
the past decades. In the above all fields, the 
dimensionless non-linear reaction diffusion 
equation is 
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Where C represents the dimensionless concen-
tration of the electro active species, T represents 
the dimensionless time and )(Cϕ represents the 
homogeneous reaction term generally polynomial 
in the concentrations (which is non-linear in 
concentration). Most non-linear differential equa-
tions are difficult to solve in closed form. It is very 
difficult to obtain the exact solution to most non-
linear differential equation. Moreover, even when 
closed-form solution is known, it may be so com-
plicated that its qualitative properties are obscured. 
Thus, for most non-linear differential equations it 
is necessary to have reliable techniques to 
determine the approximate behavior solutions. 
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In Michaelis-Menten kinetics, the non-linear 

term is 
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When 1<Cα , the non-linear term in the above 
equations is approximately equal to KC .When 

1>Cα , the non-linear term can be written as 
α/K .This model is completely discussed in [ 18, 

19]. We have discussed [8-10] some of the reaction 
diffusion equations when 

CaC 1)( =ϕ  (3) 

In photolytic process [7], the non-linear 
reaction term is 

2
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In Birk - Perone system [5] (rapid photolytic 
processes) the reactions are 
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→
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Chronoamperometry has been employed as a 
method for monitoring intermediates generated by 
flash photolysis [5, 11, 12] and has been applied 
successfully to the determinations of several photo-
chemical mechanisms [13, 14]. The application of 
electro-chemical techniques for the study of 
transient photolytic reactions was prompted by the 
observation that most photochemical processes 
appear to involve free radical and other ele-
ctroactive intermediates [11]. Furthermore, it 
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appeared that many photolytically -induced che-
mical processes were similar to electrolytic ally-
induced chemical processes [11]. Thus, not only 
could electrochemical techniques be applied to the 
study of photolytic intermediates, but their 
qualitative characterization could be simplified by 
purely electrochemical studies of the chemical 
processes in question. Furthermore, electroche-
mical measurements have several analytical adva-
ntages for photolysis studies: sensitivity is avai-
lable for dilute concentrations of a wide range of 
compounds; nearly the same detection limit exists 
for all electroactive compounds, since response de-
pends primarily on mass transfer; and time-re-
solution in the microsecond range is available [11]. 

Most pertinent to the work reported here are 
the studies of Berg [15] who has applied polarized 
electrode techniques to the study of flash photo-
lytic processes in solution. Berg’s approach has 
been primarily exploratory and has involved con-
ventional polarographic instrumentation and tec-
hnique. In addition, he has reported the observation 
of transient photo-product currents during the 
drop-life of individual drops at the dropping mer-
cury electrode. Thus, his studies of rapid kinetics 
have involved analysis of current-time behavior at 
individual expanding mercury drops. This quan-
titative approach was admittedly inaccurate and 
insensitive, however, because of the general diffi-
culty in developing theory for kinetic currents at 
the dropping electrode, and because of the additi-
onal complications of handling second-order 
kinetic processes. 

Both Berg and Schweiss al. [15] and Perone 
and Birk [5] have demonstrated the general appli-
cability of electroanalytical techniques to the study 
of photolytic processes. Qualitative information 
has been obtained from current-potential plots with 
the polarographic technique using continuous 
irradiation [11], and with the stationary-electrode 
potentiostatic technique using flash irradiation 
[11]. Rate data have been obtained by a variety of 
techniques which have included time-delayed po-
tentiostatic analysis [11], classical kinetic analysis 
[15], and theoretical electrochemical kinetic-diffu-
sion studies [3]. 

An analytical solution for this problem was 
first attempted by Birk and Perone [5], who ho-
wever oversimplified their assumption [7]. But this 
result was incorrect and was later corrected by 
Britz and Kastening [6]. Britz and Kastening [6] 
presented a rigorous derivation of the solution to 

the problem for various electrode geometries in the 
form of infinite series. The purpose of this 
communication is to derive a closed form of 
analytical expression of current at planar electrode 
for the electrochemical monitoring of a second 
order decay of radicals generated by flash 
photolysis or pulse radiolysis. 

2. MATHEMATICAL FORMULATION 
OF THE PROBLEM 

Mathematically, the situation involving kine-
tics and diffusion at a planar electrode can be 
described by Fick's laws [6] 
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Here x is the distance from the electrode, t is 
the time after A is initially produced around the 
electrode, which is being held at constant potential 
and k is the rate constant  of the homogeneous 
chemical reaction and c(x, t) is the concentration of 
A at x and t. Britz and Kastening [6] presented a 
concise discussion of the mathematical formulation 
of this problem for planar electrode which is 
summarized briefly here for completeness. The 
initial and boundary conditions are 
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The required expression of the current is [6] 

0=
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
x

k x
CnFADi  (8) 

where n is the number of moles of electrodes 
involved in the oxidation or reduction of one mole 
of the radical, F is the Faraday constant, A  is the 
area of the electrode and D  is the diffusion 
coefficient. Normalizing all the variables as usual, 
the non-linear diffusion equation (6) becomes 
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tkcK *2 where = . Now the initial and boundary 
conditions are 
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Birk and Perone [5] was found the solution of 
this problem first time and the more rigorous 
solutions (current only) was found to be [6] 
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where 

DtnFADCik π00 ==  (12) 

KTtkc == *2θ  and z = )1/( θ+θ  (13) 
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Using the first seven terms of the equation 
(11), the Padé approximant (see Appendix A) can 
easily be constructed as 
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The numerical values of  30 pp − and 31 qq −  
are p0=1,p1= -1.9767,p2=1.1853,p3= -0.2086 

q1= -1.2499, q2=0.4669 and q3=-
0.0524.Consequently 
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This is a simple closed form of analytical 
expression of the current for photolytic reaction at 
a planar electrode. The accuracy of the Padé 
approximation (Eqn.(16)) was tested by compa-
rison with rigorous equation (11) which was 
computed for a wide range of z values. 

3. DISCUSSION 

Much work has been carried out on the elec-
trochemical observation of a second order decay of 
radicals generated by flash photolysis or pulse 
radiolysis. Birk and Perone [5] derived an appro-
ximate expression of current (Eqn (17)) at a planar 
electrode 
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Equation (17) involves the assumption that the 
current at the electrode is smaller than the current 
in the absence of decay by the same factor as that 
by which the bulk concentration has decreased in 
the solution [6]. Britz and Kastening [6] obtained 
the rigorous derivation of the current (Eq.(11)) in 
form of infinite series. Britz and Kastening [6] also 
reported the approximate expression (Eq. (18)) for 
current at a planar electrode. 
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The average relative error between the Britz 
and Kastening’s infinite series expansion and the 
equation (18) (Birk and Perone [5]) is 1.66 % 
where as the relative error between the equation 
(11) and equation (17) is 22.15%. Among the 
above three approximations (Eqn (16), Eqn (17), 
Eqn (18)), our Padé approximation is a good 
approximation to the rigorous infinite series (Eqn 
(11)). 

4. CONCLUSION 

Padé approximants are typically used when 
there is some unknown coefficients in the function 
f(z). (or Eqn.(11)). Britz and Kastening  [6] have 
compute the coefficients of current function 
(Eqn.(11)) by laborious mathematical technique. 
Padé approximation can be constructed using the 
first few coefficients in the power series expansion, 
but they are not necessarily getting small, and we 
have no idea where (or whether) the power series 
is convergent. Here the Padé approximant 
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coefficients ( p0-p3,q1-q3 (7 terms)) are easily 
calculated from the seven coefficients (a0-a6) of 
power series expansion (see appendix A). 

In the Table - 1 we have compared the Padé 

approximation and the seven terms ⎟
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the equation (11) with complete power series 
expansion (Eqn.(11)). The average relative error 
between our Padé approximant and Britz and 
Kastening’s [6] infinite series expansion (Eqn.(11)) 
is 0.029  where as the average relative error 
between Britz and Kastening ‘s [6] infinite series 
expansion (Eqn.(11)) and up to 7th term 
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nza of the series is 7.09. Note that both the 

values derived from the same seven original 
coefficients (a0-a6) values. Hence the first seven 
terms, converted to a Padé approximant, gives a 
remarkable good representation of the whole 
current function for all values of z. Hence  Padé 
approximation is a closed, an accurate and a 
powerful but in the end still mysterious 
mathematical technique. By a proper transcription 
of variables, the methodology will be extended to a 
stationary sphere, expanding plane and dropping 
mercury electrode [6]. 

 
Table.1 - Current at planar electrode for different values of z 

θ  z Eq.(11) 
Britz et.al [6] 

Padé approximant
Eq.(16) 

Eq.(11) (up to 7th term) 
Britz et.al [6] Eq.(17) Eq .(18) 

0 0 1.00000 1.0000 1.00000 1.0000  1.0000  

0.5 0.3333 0.734412 0.734391 0.734413 0.6667   0.7335  

1.0 0.5 0.581006 0.580968 0.581019 0.5000   0.5791  

5.0 0.8333 0.218699 0.218634 0.219339 0.1667   0.2158  

10.0 0.9091 0.123056 0.12301 0.124352 0.0909   0.1209  

20.0 0.9524 0.06566     0.065635 0.067563 0.0476   0.0644  

30.0 0.9677 0.044859     0.044842 0.047032 0.0323   0.0439  

40.0 0.9756 0.034008     0.033995 0.036333 0.0244   0.0333  

50.0 0.9804 0.027377     0.027367 0.029800 0.0196   0.0268  

60.0 0.9836 0.022941     0.022932 0.025430 0.0164   0.0224  

70.0 0.9859 0.01974 4    0.019737 0.022283 0.0141   0.0193  

80.0 0.9877 0.017238     0.017231 0.019815 0.0123   0.0169  

90.0 0.9890 0.015425     0.015419 0.018031 0.011     0.0151  

100.0 0.9901 0.013889    0.013884 0.01652 0.0099   0.0136     

 

APPENDIX-A 

A Padé approximant is a rational function approximation whose power series expansion agrees with 
the given infinite power series to the highest possible order [17]. Let 
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be a formal given power series. Let m  be a non-negative integer. The [m/m] Padé approximant of f(z) 
is the unique rational functions R(z), 
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Notice that in Eqn.(A2), there are m+1 unknown numerator coefficients and m unknown denominator 
coefficients. In order to find the coefficients pi and qi we may write: 
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Equating the coefficients of corresponding powers of zi ( i = m+1 to  2m) we find 
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The above set of m equations ( Eqn.(A5) )  can be written as  
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From which we can calculate the values of qi’s (i=1 to m). The denominator coefficients p0, p1,.....pm  
follow from Eqn.(A3)  by equating the coefficients1,z,z2,....,zm: 
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Thus from Eqns.(A6) and (A7) we determine the Padé numerator and denominator and these 
equations are called the Padé equations. We have obtained an [m/m] Padé approximant which agrees with 
Eqn.(A1) through order zm+m. 
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