IZVOD

Kiselo nagrizanje (bajcovanje) ima osnovni/ korozione produkte sa predmeta prije nego osnovni materjial izaziva gubitak metala i kiseline inastajinje gres̄aka kod bajocvanja. Da bi se sprijec̃ilo ovo neżeljeno sporedno dejstro tror za na_rizanje dodaje se inhibitor. U ovom radu testiralio smo inhibitorsko dejstvo tri razlicita ne ganska inhibitora u/rastvoru HCl i $\mathrm{H}_{2} \mathrm{SO}_{4}$ i jednog organskog inhibitora u rastvoru $\mathrm{H}_{3} \mathrm{PO}_{4}$ u proce upotrebom gravimetrijske metode. Dob usvim testiranim koncentracijarna HCl i' $\mathrm{H}_{3} \mathrm{PO}_{4}$ pri temperaturi od $60^{\circ} \mathrm{C}$ ig astalo.

1. UVOD

Celik je metal koji zbog svojíh bina i niske cjene kos̄tanja ima mnogim industrijama, zbog $\overline{\text { enag }}$, vanja vezal na za inhibiciju korozije čelik maju to iski i praktičan znaçaj [1,2]. Upotrøø -ibitora jajedra od najekonomic̄nijih metoda _jom redukuje korozivno nagrizanje metala 8,4]. Pod libitogima korozije podrazumjevaju sy stance koje po uvodenju u korozionu sredj of co y nalim/kolic̄inama, mogu u velikoj mjen a 5 Anje brzinu elektrohemijske koro peta -gura. Njihova primjena je veoma תay ina u xiselifn rastvorima za nagrizanje rue ak iste थ pripremi povrs̄ine metala za galvà vili hemijslyu zaštitu ili lakiranje, prilikom/ i Isćenja prenca/u sistemima gdje cirkulise voda, destilavonim kolonama, parnim kotlovima, kontejnerima za yodu, uredajima za pretakanje itd. Posebnu paz̄nju, zbog znac̄aja i vrijednosti objekta, potrebno je pplsvetiti u ciis̃ćenju kotlovnica. Zişçenje parnih kotlova kao i svako drugo industrijsko çişćenje, izvodi se kiselinama koje obavezno morajy/biti inhibirane, tako da obezbjede optimalnu zas̄tita materijala na postrojenjima.

[^0]ganska inhibitora u/rastvoru HCl i $\mathrm{H}_{2} \mathrm{SO}_{4} i$ jednog organskog
bajcor ja cunderisanog dolika. Istrażivanje je provedeno vi rezuif ukazyju na zaştitnu vnjednost inhibitora preko 98\% Je inhibitorsko dejstvo organskog inhibitora u rastvoru Editna yrjednost inhibitora.

Kiseline kao şto su hlorovodonična, sumporna i fosforna kiseline, se ठ̄esto koriste za uklanjanje korozije [5,6]. Bez obzira koja se kiselina upotrebljava, zadatak rastvora za bajcovanje (nagrizanje), je da ukloni produkte korozije sa površine predmeta prije nego s̄to poc̃ne nagrizati metal. Neżeljeno sporedno dejstvo procesa bajcovanja je dejstvo kiseline na osnovni materijal, şto izaziva gubitak i materijala i kiseline, kao i nastajanje gres̉aka na površini metala. Inhibitor u rastvoru za nagrazinje ima zadatak da sprijec̃i neżeljene procese, odnosno da bude nagriżen osnovni materijal. Kad je u pitanju żeljezo, sa pogodno odabranim inhibitorom, gubitak metala je za 90\% niži nego kod bajcovanja sa C̄istom kiselinom. Na osnovu uştede koja nastaje zbog toga što nije rastvoren metal smanjuje se i potrošnja kiseline.

Prema tome, koroziono dijelovanje agresivnih komponenata u elektrolitu se u praksi vrio c̄esto smanjuje ili suzbija primjenom inhibitora korozije metala. Po svojoj prirodi inhibitori korozije su jedinjenja koja se adsorbuju na površini metala pomoću Coulombovih (Kulon), Van der Waalsovih (Van der Vals) ili valentnih sila. Moguća je adsorbcija na površini metala pri jednovremenom dijelovanju vis̉e vrsta sila.

Inhibitori se prema svojoj hemijskoj prirodi dijele na organske i neorganske inhibitore. Neorganske supstance moraju da oksidis̃u metal, stvarajući pasivni sloj na njegovoj površini. Molekuli organskih spojeva moraju biti strukturno veliki, posjedovati Π veze, aktivni centar ili grupu. Ova svojstva daju
mogućnost da se prekrije velika površina na metalu, sa c̃vrsto vezanim filmom. Brojna su organska jedinjenja koja sadrże azot, kiseonik i /ili sumpor, a koja su se u kiseloj sredini pokazala kao odlic̃ni inhibitori korozije čelika [1,7,8].

Mehanizarn djelovanja inhibitora może biti: anodni (usporavaju anodnu reakciju), katodni (usporavaju katodnu reakciju) i mjes̃oviti (usporavaju i katodnu i anodnu reakciju). Inhibitori mijenjaju vrijednost nultog ili adsorbcionog potencijala, međutim, iz promjene ovih parametara ne mogu se uvijek objasniti eksperimentalni rezultati ukoliko je inhibirajući efekat veči od onog koji se mogao oc̃ekivati. U ovakvim sluçajevima ispoljavaju se oba, a ponekad i više mehanizama. Opna organskog porijekla, koja se stvara na povrs̄ini metala, może da mijenja sastav dvojnog sloja, a prema tome i kineti)ku elektrohemijskih reakcija i istovremeno izoluje met od dejstva korozione sredine, što oteża prolazz jor metala iz res̄etke u rastvor [5,8].

Kod izbora inhibitora mora se imati quidu da inhibitori pored uticaja na bajcovanje moraj zaştitno dejstvo. Tako npr. tiourea je jedan od dii inhibitora za żeljezo u sumpornoj i fofsfornoj ki dok je za bajcovanje aluminijuma u/fog ova supstanca potpuno nepodesria, praktična ispitivanja, iako se u/itera jpr vourkao dogućnosti. Ovaj pr fer p rzuje də literaturne podatke treba kyitiç bosmatro i prije uvodenja u pogon ispitati; isto A iedan inhibitor u istoj kiselini rijetko zastiàlue razl, materijale [6,7].

Izbor inhibitora prii sy a zavisi od vrste kiseline koja se køristi fjcoy lje / od radne temperature. Sona i siworon ina/kiselina npr. primjenjuje se prod as term,_ratyrnim uslovima nego sumporna fos Tiselina ili organske kiseline. Inbübitón astornu kiselinu vrlo često djeluju i u sumporno) vidosulfonskoj kiselini, dok ima relativno malo jedir),_1ja/koja djeluju i u sonoj kiselini. Ako se za posebne/svrhe zahtijeva obimna upotréba inhibitora, naiஜ̈es̃ce se moraju uzeti komercijalni inhibitori za/bajcovanje, koji po pravilu sadrže vis̄e jedinjenja. Dejstvo inhibitora kupljenih ra trzištu nije jednako u svim kiselinama, zato je preporučljivo prije apotrebe u pogonu jedno laboratorijsko ispitivaryje. U ovom radu je ispitana zas̄titna vrijednost/komercijalnih inhibitora u razlicitim kiselim rastvopima i temperaturnim uslovima u procesu bajcovanja (nagrizanja) đ̄elika.

2. MATERIJAL I METODE RADA

U øvom radu koristi se gravimetrijska metoda za određivanje brzine korozije i djelotvornosti inhibitora [8]. Koristene su tri vrste neorganskih inhibitora i to Rodine XL 1050A, Rodine XL 1050B i Rodine XL 1050 C , a od organskih inhibitra tiourea. Za
eksperiment smo koriģtili dvije vrste čelika St 14.05 i St. 14.45 dimenzija $80 \times 100 \mathrm{~mm}$.

Celične pločiç prije poc̄etka mjerenja su bruṡene SiC brusnim papirom finoće 600. Nakon toga su odmašćerle etanolom, ispranø dva puta destilovanom vo osus̃ene na yazduhu i izvagane. Očis̃čer plou su uronjerye u osnovni rastvor $\left(15 \% / \mathrm{HC}\right.$ - $\left.15 \mathrm{i}_{2} \% \mathrm{H}_{2} \mathrm{SO} \%, 7.5 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$. Po isteku vyemen stiry a, sa ploc̃ica su otkljoneni korozioni froizvo ponovo je izmjerena masa plocije Isti ostupak je ponovljen dodavanjem innibit V anoy rastuør.

Bk rzina kgrozije $\mathrm{g} \mathrm{m}^{2} \mathrm{~s}$
$\Delta \mathrm{m}$ azlikg u masi prije i nakon eksperimenta, g
vrijertie trajanja eksperimenta, s

- poy/sina uzorka, m^{2}

Skepen djelotvornosti inhibitora se odreduje prema sljedećem izrazu:

$$
Z=\frac{\text { Bko }- \text { Bki }}{\text { Bko }} \times 100 \%
$$

gdje je:
Beo - brzina korozije bez inhibitora, $\mathrm{g} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
B_{k} - brzina korozije uz dodatak inhibitora, $\mathrm{g} \mathrm{m}^{-2} \mathrm{~s}^{-1}$

3. REZULTATI I DISKUSIJA

Rezultati dobijeni bajcovanjem cunderisanog C̄elika tj. C̄elika prekrivenog kovarinom (St. 14.45) u 15% rastvoru HCl pri temperaturi od $20^{\circ} \mathrm{C}$ i sa tri razlicita inhibitora prikazani su u tabeli 1. Vidljivo je da je vrijeme skidanja kovarine najmanje primjenom inhibitora Rodine XL 1050A (9 min), a najduže primjenom inhibitora Rodine XL 1050C (20 min). Ovi rezultati ukazuju da primjena inhibitora Rodine XL 1050C nije pogodna za jedan rentabilan pogon.
Tabela 1 - Vrijeme nagrizanja cunderisanog čelika u sonoj kiselini sa i bez inhibitora

Koncentarcija inhibitora (vol \%)	Vrijeme skidanja cundera (min)
Bez inhibitora	9
0.05% inhibitora Rodine XL 1050A	9
$0,05 \%$ inhibitora Rodine XL 1050B	12
$0,05 \%$ inhibitora Rodine XL 1050C	20

Testiranja zavisnosti veličine odnos̃enja materijala (Ċelični lim St 14.05) od različite koncentracije $\mathrm{H}_{2} \mathrm{SO}$ i razlicite temperature rastvora za inhibitor Rodine XL 1050A (koncentracija inhibitora 0,05\%) pokazala su da povećavanje koncentracije $\mathrm{H}_{2} \mathrm{SO}_{4}$ u
osnovnom rastvoru i temperature ne utiču znatno na zaštitnu vrijednost ispitivanog inhibitora (tabela 2). Zabiljeżena zas̃titna vrijednost navedenog inhibitora kreće se u intervalu od 98,0 do $99,1 \%$, s̃to potvrđuje
opravdanost koris̄ćønja inhibitora za skidanje cundera sa čeliçonog lima. Najveça zas̃titna vrijednost ovog inhibitora zabiljeżena je u 15\% rastvoru $\mathrm{H}_{2} \mathrm{SO}_{4}$ i temperaturi od $30^{\circ} \mathrm{C}$ i iznosi $99,1 \%$.

Tabela 2 - Zaṡtitna vrijednost inhibitora Rodine XL 1050 A pri razlicititin koncentracijama $H_{2} \mathrm{SO}_{4}$ i razlicitim temperaturarna

Rastvor $\left(\% \mathrm{H}_{2} \mathrm{SO}_{4}\right)$	Vrijeme bajcovanja (nagrizanja) (h)	Temperatura ($\left.{ }^{\circ} \mathrm{C}\right)$	Masa odnof. u kis. bey inhibitora (mg)	Masa odnoš. u inhibiranoj kiselini (mg)	Zas̄titna/ vrijednøst inhibitoga (\%)
5	8	30	69,6	1,4	98,0
5	8	80	A29,0	7,2	198,4
15	8	30	323.0	3,0	99,1
15	8	80	- 1180,0	4.4	- 98,3
20	8	80	1170,0	-	98,1

Na slikama 1 i 2 dato je vrijeme skidanja cundera
i vrijednost odnos̃enja materijala u HCl sa
inhibitoror Kodine 1050A i bez inhibitora kad je u rastvor prig an 20\% żeljez\% (II)-hlorid.

Slika 2 - Vrijeme skidanja cundera i masa odnos̃enja c̄elī̃ne trake u 15\% sonoj kiselīni sa $20 \% \mathrm{FeCl}_{2}$ pri temperaturi od $70^{\circ} \mathrm{C}$. Koncentracija inhibitora 0.1\%

Gubitak mase ispitivanog materijala u $15 \% \mathrm{HCl}$ sa $20 \% \mathrm{FeCl}_{2}$ i temperaturi od $70^{\circ} \mathrm{C}$ bez inhibitora je najmanji nakon vremena potapanja materijala od 20 i 40 s i iznosi 50 mg , dok je nakon 180 s gubitak mase znatno veći i iznosi 150 mg (slika 1). Ako primjenimo inhibitor Rodine XL 1050 A u koncentraciji od $0,1 \%$ u isti rastvor, możemo zapaziti da je gubitak mase znatno manji i iznosi 30 mg . Ovaj gubitak mase je isti i nakon vremena potopanja od 20 s i 180 s , što znači da se gubitak mase ispitivanog materijala produžavanjem vremena bajcovanja nije promjenio.

Inhibitor se może dodavati u znatno koncentrovanije kiseline i kod vissih temperatura, bez s̈tetnih uticaja na kvalitet metala koji se obraduje, kao şto je pojava vodonikove krtosti. Da bi se mogla koristiti vişa temperatura rastvora za bajcovanje, inhibitor mora biti termički stabilan i treba imati ravnomjerno inhibiranje. Ova pravila vaże i za povećanjø

Na slikama 3 i 4 prikazan gubitak osnovrrog materijala (čelika) u 15% rastvoru HCl pri kemperaturi of $20^{\circ} \mathrm{C}$ i $50^{\circ} \mathrm{C}$ sa inhibitorom Rodine XL 1050 A /bez primjene inhibitora.

Zbog ovakve zavisnosti pretpostavljeng je da se dijelgvanje inhibitora zasniva na njihovoj/adsorbciji na površini metala. Zavisnost brzine korozije od køncentracije inhibitora ima oblik izotørme adsorpcije samo pri malim koncentracijam/a inhibitora u agresivnoj sredini. Pri većim koncertracijama inhhibitora njihovo dejstvo slabi, a u izvjesnim sluçajevima dolazi čak i do poveçanja brzine korohzije pri većim koncentracijama inhhibitora [8].

Gubitak mase ispitivanog materijala nakon vremena potapanja od $8 \mathrm{~h} \mathrm{u} 15 \%$ rastvoru HCl i pri temperaturi od $20^{\circ} \mathrm{C}$ bez primjene inhibitora je 15
$\mathrm{g} / \mathrm{m}^{2}$, dok je sa primjeprom inhibitora nakon 8 h od potapanja ispitivanog materijala zabiljeżen gubitak od $1 \mathrm{~g} / \mathrm{m}^{2}$ (slika 3). Sa povećavanjem temperature rastvora gubitak mase ispitivanog materijala se povećava, tako da poslije 8 h od potapanja materijala u 15% rastvory HCl i pri temperaturi od $50^{\circ} \mathrm{C}$ bez primjene inhib/tora gubitak mase osnovnog makerijala iznosi $240 \mathrm{~g} / \mathrm{m}^{2}$, a sa primjenom inhibitora/ova vrijednost je znatno manja i iznosi $10 \mathrm{~g} / \mathrm{m}^{2}$ (slika 4).
 yastvor kiseline sa inhibitorom
Visokp temperature pri primjeni organskih inhibitora mogu uticati na raspadanje organskih supstanci, 寿to u procesu bajcovanja dovodi do potpunog uništavanja inhibitora. U tabeli 3 prikazani su rezu/tati primjene razlicitih koncentracija tiouree u 7.5% fosfornoj kiselini na temperaturi od $60^{\circ} \mathrm{C}$ i na osnovu ovih rezultata możemo konstatovati da se forzina korozije nije smanjila primjenom koncentracije tiouree od 0,1 i 5,0\%, u odnosu na brzinu korozije u rastvoru bez inhibitora, tako da je za obje testirane koncentracije inhibitora zas̃titna vrijednost jednaka nuli.
Tabela 3 - Brzina korozije c̄elic̄nog lima primjenom razlicitih koncentracija tiouree u rastvoru fosforne kiseline

Koncentracija tiouree (vol \%)	Brzina korozije $\left(\mathrm{g} / \mathrm{m}^{2} \mathrm{~h}\right)$	Zaṡtitna vrijednost (\%)
Bez inhibitora	18,84	-
0,1	18,80	0
5,0	18,79	0

Da bi bio djelotvoran, inhibitor mora biti ne samo sposoban inhibirati koroziju nego i biti prisutan u odgovarajućoj kolic̄ini na povrşini metala [8]. Neki inhibitori, prisutni u nedovoljnoj koncentraciji, samo mijenjaju raspodijelu, ali ne i intezitet korozije. Stoga je značajno odrediti koncentraciju inhibitora koja
sigurno štiti od korozije. S druge strane, zbog ekolos̄kih i ekonomskih razloga treba izbjegavati suvišnu potros̃nju inhibitora. Uobičajne koncentracije inhibitora iznose 0,05-0,3\%, daljim povećanjem uglavnom ne dobijamo veće zas̄titno dejstvo.

Na osnovu rezultata testiranja zas̃titne vrijednosti inhibitora Rodine XL 1050A pri razlicitim koncentracijama u 15% rastvoru HCl , na temperaturi od $80^{\circ} \mathrm{C}$ i 13 minutnom vremenu potapanja čelic̃ne ploc̃ice, możemo konstatovati da se zaştitna vrijednost inhibitora neznatno povećala prilikom primjene pet puta veće koncentracije inhibitora (tabela 4). Zas̄titna vrijednost testiranog inhibitora pri koncentraciji $0,2 \%$ iznosila je $99,6 \%$, a pri koncentraciji $1,0 \%$ zas̃titna vrijednost je $99,9 \%$. Međutim, inhibitor je znatno smanjio brzinu korozije c̄elika. U rastvoru bez inhibitora brzina korozije iznosi $532,90 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$, dok je u rastvoru sa 1% inhibitorom Rodine XL 1050A brzina korozije $1,68 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$, a u rastvoru sp $0,2 \%$ brzina korozije iznosi $1,84 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$.
Tabela 4 - Zas̃titna vrijednost inhibitora Rodin \propto XL 1050A pri razliciitim koncentracijama/testjrani materijal ċelični lim St 14.05)

Koncentracija inhibitora (vol \%)	Brzina korozije ($\mathrm{g} / \mathrm{m}^{2} \mathrm{~h}$)	Za/titna vrijed Inost (\%
Bez inhibitora	532,90	7
0.2	1,84	99,6
1,0	1,68	99

U ovom radu je ispitivan \neq zaştitr komercijalnih inhibitora u raдlličitim rima i temperaturnim uslovirna u pro agrizanja čelika. Ispitivanje je izvyseno mrimjenor gravimetrijske metode. Inhibitor Rodir XL 1050AM Rodine XL 1050 B su djelotvorni vrl kratkom vremenu, dok je inhibitor Rodin \& 150 pokazao znatno produżenje vfemena balu uijg hije pogodan za jedan rentabilan pg Zabı, ena zas̃titna
vrijednost za inhibitor Rodine XL 1050A u različitim koncentracijama HCl i $\mathrm{H}_{2} \mathrm{SO}_{4}$ je preko 98%. Rezultati istraživanja ukazuju na termičku stabilnost ovog inhibitora na temperaturi do $80^{\circ} \mathrm{C}$ i njegovo ravnomjerno dejstvo. Povećavanjem koncentracije inhibitora Rodife XL 1050A za pet puta zaštitrya vrijednost inl/ibitora se neznatno povećala. Organski inhibitor tiourea nije pokazao inhibitofsko dejstvo na kemperaturi od $60^{\circ} \mathrm{C}$.

5. LITER/ATURA

[1] M/Abdallah, (2012) The In Hydrochlori Acid Compour Acid In J. Elu
I.Zaafarany, A.S.Fouda arbon Steel Corrosion in In using Spme Phenolic SAAli. M.T aee ${ }^{\prime}$ ochem. Sci/, 7, 282-304. isoxazo an class of Rahrnan (2003) The mild ell in an class of corfosion inhibitors of 26ø
[3] prenyth ta, A.S. Elithy (2009) Inhibition effect of 4 e derivatives on corrosion of 304L ainless stoal in HCl solytion, Corros. Sci., 51 (4), 868-875.
K. F aled, N.Hackerman (2003) Investigation of the in bitive effect of ortho-substituted anilines on on of iron in 1 M HCl solutions, Electrochim. A니․, 48 (19), 2715-2723.

- Mandić (2000) XVII Jugoslovenski simpozijum o moroziji i zasstiti/materijala, Beograd, SRJ, zbornik radova, p. 279/290.
P.Selvakumart: B.K.Balanaga, C.Thangavelu (2013) Corrosion inhibition study of Stainless steel in Acidic medium - An Overview, Res. J. Chem. Sci., 3(4), 87-95.
[7] M.Soblyi, M.Abdallah, K.S.Khairou (2012) Sildenafil citrate (Viagra) as a corrosion inhibitor for carbon steel in hydrochloric acid solutions, Monatshefte fur Chemie, 143 (10), 1379-1387.
[8] M.G.Pavlović, D.Stanojević, S. Mladenović (2012) Korozija i zaśtita materijala, Tehnološki fakultet, Zvornik.
[9) E.Stupnis̄ek-Lisac (2007) Korozija i zas̄tita konstrukcijskih materijala, FKIT, Zagreb

ABSTRAC

THE ROLE AND,ACTION MECHANISM OF INHIBITORS IN SOLUTIONS FOR ETCHING STEEL

Acid etching has a major task, regardless of which acid is used, to cancel all corrosion products from objects before it starts to erode base material. The effect of acid on base material causes metal and acid loss, as well as formation of etching defects. In order to prevent this undesired side effect, inhibitor is added in etching solution. In this paper we tested the inhibitory effect of three different inorganic inhibitors in HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions and one organic inhibitor in $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution in the process of etching rust steel. The research was conducted using gravimetric method. Obtained results indicate protective value of inhibitor in over 98% in all fested concentrations of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$, while the inhibitory effect of organic inhibitor in $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution/at the temperture of $60^{\circ} \mathrm{C}$ was absent.
Keywords: etching, inhipitor, steel, protective value of inhibitor.

Scientific paper

Peper received: 13.05.2015.
Paper corrected: 19.06.2015
Paper accepted: 04.07.2015.
Paper is available on the website: www.idk.org.rs/casopis

[^0]: Autor za koréspondenciju: Sasa Mićin
 E-mail: smicin@teol.net
 Rad priphljen: 13. 05. 2015.
 Rad korigovan: 19. 06. 2015.
 Rad/prihvacen: 04. 07. 2015.
 Rød je dostupan na sajtu: www.idk,ora, rs/casopis

