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ABSTRACT 

This paper, on the example of a typical loaded welded assembly, made optimization of its dimensions in 
terms of the cost of welding. In such an elaboration the mathematical optimization model with limitation 
functions has also been presented and it should be taken into account in the process of designing by 
the technologist and designer.  

To solve the presented problem the method of geometric programming was proposed that has in detail 
been elaborated in the paper in the form of an algorithm suitable for the application. In this way the 
optimization or primary task was reduced to a dual task through a proper function, which is much easier 
to solve.  

The method has been illustrated on a practical computational example with a different number of 
limitation functions. It is shown that in case of a lower degree of complexity the solution can be reached 
by maximizing the corresponding dual function by means of mathematical analysis. In case of a higher 
degree of complexity, it is necessary to use some of the methods of non-linear programming. In this 
case the solution of the problem is simplified due to the minimization of a linear equation. 

Keywords: Alphabetic loaded welded structures , the mathematical model of optimization, the cost 
function , feature limitations , geometric programming, positive polynomials, dual function. 
 

1. MATHEMATICAL MODEL OF OPTIMIZATION 

Mathematical basis of techno-economic opti-

mization of the objects is the mathematic model of 

optimization. Model of optimization according to 

figure 1 consists of the  components: 

- State functions Fsi (i = 1,2,3 ...), 

- Limit function (function boundary conditions) Fgi 
(i = 1,2,3 ...), 

- Criteria optimization and 

- The objective function Fci (i = 1,2,3 ...). 

The first two components, ie. state functions or 

state equation and the limit function object of the 

mathematical model of the object is defined. Real 

objects imply a wide range of phenomena, 

processes and systems as very frequent objects of 

modelling in mechanical engineering and 

machining as technological processes [1,2]. 
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Figure 1 - The structure of the mathematical model 
of optimization object 

It should be noted that the mathematical model, 
as opposed to the physical retains the physical 
nature of the originals (real property), showing the 
mathematical abstraction. This abstract form 
expresses the essential physical, geometrical, 
technological, economic or any other features of 
the real object, [3,4]. 

The mathematical model of a machining 
process can be generally shown schematically by 
Figure 2. 

http://dx.doi.org/10.5937/ZasMat1404351O
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Figure 2 - The mathematical model of the 
machining process 

In this, it is necessary to analyze the inputs and 
outputs of "natural" process and all sets of input-
output variables xi, yi, zi i = 1,2,3 ... for each de-
composed "elementary" process. This is a "natural" 
process that constitutes the core of the machining 
process and should describe the mathematical 
model of the process [5-7]. 

After analyzing the existing restrictions one 
accesses the mathematical description of the 
object in the mathematical language as a specific 
set of functions and equations. Thus the main 
features of the mathematical model are a function 
of the state of Fsi and function limitations Fgi. 

Considering the scheme in Figure 2, we can 

set up a mathematical model of any machining 

process in production engineering (with and without 

removing the chip, and beyond), through the 

functions of the process: 

0)z,y,x(Fsi 


, ...,3,2,1i   (1) 

and the limit function: 

0)z,y,x(Fgi 


 ...,3,2,1i   (2) 

The mathematical models (1) and (2) are 

essentially physical, geometrical, technological and 

economic dependent qualimetric within the mac-

hining process and to the admissible domain D 

resizing. 

The system (1, 2) vectors ,y,x


 and z


 denote a 

set of variables input- output variables of the pro-

cess . Vector characteristics of the process states 

or controlled size 

),y,...y,y,y(y n321


 
describe the state and behavior of the machining 
process and the system was created as a 

consequence of inputs ,x


and z


. Input parameters, 

which are numerous, are divided into controlled 
)(x


and uncontrolled )(z


size of the process. The 

vector ,x


includes all inputs to the process whose 

value can be measured numerically. The vector  

),x,...x,x,x(x p321


can be broken down into 

a group optimal or control the size and groups that 
are constant in the course of the process. The first 
group can be changed in the process in order to 

achieve the desired state of the process ( ) and 
optimum objective function (Fc). 

Vector uncontrolled size ,...)z,z,z(z 321


 

contains one input parameters whose values can 
not be measured, as well as those that can be 
measured, but whose impact on the negligibly 
small. Vector causes adverse conditions and 
adverse changes in the flow characteristics of the 

process )(y


or the objective function (Fc). 

For the case of deterministic processes impact 

of uncontrolled factors z


 is not large, there is a 

correlation between the characteristics of states y


 

and inputs x


. For this model, the size z


 will not be 

contained in the relations (1) and (2) , so that it is 
obtained: 

0)y,x(Fsi 


...,3,2,1i   (3) 

0)y,x(Fgi 


...,3,2,1i   (4) 

or in the form of an explicit, 

),x(Fy


  (5) 

Components of the state functions and function 
limitations, as it is said, is defined as the 
mathematical model while the optimization criteria 
as the third component, together with the first two, 
sets the framework mathematical model of 
optimization. On the basis of these three 
components, there is a specific form of the 
objective function (optimization functions): 

),z,y,x(FF cc


  (6) 

Function (6) is a mathematical description of 
the optimal control process, the identified 
optimization criteria. 

In theory, techno-economic optimization can be 
extracted more optimization criteria or objective 
functions (Fc) according to which the optimized 
processes, [8,9,2,10]:Cost (Ti), Build time (Tui), 
Economy (Ei), Productivity (Pi), Profitability (Ri), 
Quality (Ki). 

Bringing to criteria optimization 

...),K,R,P,E,t,T(F iiiiuiici   (7) 

which shows key production effects, and also 
functions Fgi constraints, which limit the allowed 
domain D changes of input, into a functional rela-
tionship with a set of input and the other mentioned 
factors, according to (6) and (2), is obtained by the 
mathematical model of optimization deterministic 
process: 

),x,...x,x,x(FF p321cc   (8) 

Dx    














0)x,...x,x,x(F

bxa

cx

D

D321gj

rir

ii

 

Techno-economic optimization is reduced to a 
mathematical point of view, the definition of 
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extremal (optimal) objective function (8) and of 
correspondingof managed size and characteristics 
of the state of the process that provides the 
optimum, as shown in Figure 3, [1,3,11]. 

 

Figure 3 - Diagram of surface features to optimize 
the optimal range 

The optimal level or solution 

)x,...x,x,x(x 0k3020100 


 of the objective function 

(8) is called a local extremum, and point M0 (defi-

ned vector 0x


) is called a point of local extremum. 

Function Fc may have several local extremes. 

To form the mathematical model of optimization 
according to (8), in addition to mathematical 
expressions objective function Fc, it is necessary to 
set up a mathematical expression of all necessary 

functions restrictions giF , ,...3,2,1i  This way, 

defines and limits of permissible or the optimal 
area, region or domain D. All these constraints can 
be expressed in the form of equations and 
inequalities containing, among others, and given 
the size of sets of input values xi, [8,12] 

According exposed, it can be concluded that 
the mathematical model of optimization, no matter 
what the subject is the word (process, system, 
structure, management, etc.) must always contain, 
as in the case of machining process, four basic 
components: Function of the facility, Limit function, 
The criteria optimization, Function of optimization 
or objective function. 

Based on these components, forming the final 
shape of the model optimization of a given object 
that expresses the function optimization 

)x(FF icc   and the permitted domain D transfor-

mations of variables xi. 

2. THE METHOD OF GEOMETRIC PROGRAMMING 

This method can solve those optimization tasks 
whose optimization functions are in the form of 
positive polynomials: 

,xB)x(F
k

1j

k

1i

b

ijc
ij 

 

  (9) 

where: Bj -positive coefficients (constants), bij-
exponents, random number, which may be 

positive, negative or zero value, xi-independent 
variables (variables) that can only have positive 
values. 

The algorithm of method, which will be sum-
marized in the following, allows to determine the 

optimal solution )x,...x,x,x(x 0k3020100 


with the 

Fc min, [13-16]. 

In many cases, the optimization of machining 
processes and technology in terms of cost, where 
the optimization function is expressed as a positive 
polynomial (9), it is possible to effective application 
of the method of geometric programming. 

2.1. The basic inequality methods 

In developing the algorithm method of geo-
metric programming, starting from the mathe-
matical inequality between geometric and arith-
metic means of non-negative numbers. This 
inequality is the foundation of the method and two 
sizes as follows, [16,12,17,3,4]. 

,ZZ)ZZ(
2

1
2121   (10) 

This relation expresses the view that geometry 
can not be greater than arithmetic means. 

Inequality (10), for k variables is: 

 
 


r

1j

r

1j

q
jjj

jZZq

 (11) 

and it is valid that the size Zj positive and positive 
size qi satisfy the condition of normality, 





r

1j

j 1q  (12)
 

From equation (11), we can write the basic 
equations of the method of geometric programming: 

 
 
















r

1j

r

1j

q

j

j
j ,

q

z
z

j

 (13) 

The previous equation is obtained when the 
inequality in replacing, 

,Zqz jjj    (14) 

where in a jz > 0. 

Inequality (14) has a fundamental meaning for 
the method of geometric programming because the 
application of this inequality to the function 
optimization (9) may change: 

,xB)x(z
k

1i

b

ijj
ij





   (15) 

in equation (13), write the basic of mathematical 
method 
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,
k

1i

i
L

i
x

q

B
xB

j

ij

q
r

1j

r

1j j

j
k

1i

b

ij 















 

 

 (16) 

where in, 

,bqL
r

1j

ijji 




 (17) 

It was pointed out that inequality (16) is valid 
for any positive values of size qi, which must satisfy 
the condition of normality (12). Proceeding from 
this, we can simplify the inequality (16) the choice 
of values for qi to obtain Li = 0 in equation (17), ie. 

0bqL
r

1j

ijji 
 ,k,1i   (18) 

Equation (X) simplified the fundamental 
expression (X), which now reads: 

,
q

B
xB

j

ij

q
r

1j

r

1j j

j
k

1i

b

ij 
 
















 (19) 

This equation applies to the condition of 
normality: 

,1q
r

1j

j




 (20) 

orthogonality, in accordance with equation (17), ie. 

Li = 0 

0bq
r

1j

ijj 


  ,k,1i      (21) 

and the condition of positivity: 

jq > 0    ,r,1i   (22) 

Right side of the inequality (19) is a function of 

the size of qj ( ri ,1 ), as can be seen, ie. 

,
q

B
)q(Q

jq
r

1j j

j

















   (23) 

and is called a dual function of a convex function 
(9), because the positive polynomial (9) is a convex 
function. 

Left Fc inequality (19), however, depends only 

on the independent variables xj ( r,1i  ). 

The following conclusion is: at the basis of the 
fundamental inequality , a polynomial of positive Fc 
(X) cannot be, whatever kind of values are the 

variables xj ( r,1i  ),smaller than the dual function 

Q (q), (X), and the primary model, i.e. minimization 
function Fc, down to the dual model, ie. the 
maximization of the dual function Q(q). So there is 
a primary reformulation (base, starting) in finding 
the optimization dual task, since it can be shown 

[15,7,16] that is a maximum value of the dual 
function Q(q) equal to the minimum value of the 
basic functions in the form of a positive Fc 
polynomials, ie. 

,
q

B
max)x(Fmin

jq
r

1j j

j
c 

















   (24) 

In these conditions must be met (20), (21) and 

(22) of the dual variable Qj ( ki ,1 ). So 

optimization (primary) task, 

,FxBminF
r

1j

k

1i

0c
b

ijminc
ij 

 



  (24a)
 

0xi   

,max)( 0

1

max Q
q

B
qQ

jq
r

j j

j















 

  (25) 





r

1j

j 1q 0bq
r

1j

ijj 
 k,1i   (25a) 

qj  > 0  r,1i   

which is much easier to solve in respect of the 
primary task (25), i.e. determination of Fc  min, Fc 

optimization function. 

2.2. Algorithm of  method 

At present,  there are two possible cases as 
follows: 

- The case without restrictions 

-  The case of the constraints 

In case that there are no limitation equations 
(24) or system (25) is defined by the minimum 
value (optimum) function optimization Fc0 (9) over 
the maximum Q0, ie. determining the optimal level 
Fc0 positive polynomial Fc testifies to the 
determination of the maximum value Q0 dual 
function Q(q). It would be the first step of the 
method. 

In the second step is calculated the optimal 

dual vector ),...,,( 03020100 kqqqqq  system of 

equations: 





r

1j

j 1q

    

0bq
r

1j

ijj 
 ,k,1i   (26) 

which represents the conditions of normality and 
orthogonality. 

In the third step is determined the maximum 
value Q0 dual function Q(q), which is based on a 

known set 0q  (determined in the second step), as 

calculated from the equation: 
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,
q

B
maxQ

0jq
r

1j 0j

j
0 

















 (27) 

The fourth step involves the determination of 
optimal primary vector (solution) 

)x,...x,x,x(x 0k3020100 


. 

The functions of the Fc, (9) found on the basis 
of the values Fc0=Q0 in the third step. Between 

0x


that minimizes the function Fc = F0, the optimal 

dual vector 0q  which satisfies the conditions of 

normality and orthogonality  (26), the second step 
becomes as follows: 





k

1i

ij0ij00 bxBqQ

,,1 ri   (28) 

From equation (28), we obtain the required 

optimal level 0x


, where the size of Q0 = Fc0 and qj0 

( ri ,1 ) are known, as well as some of the second 

or third step. 

In case you are given the limitations in the form 
of the function: 

1F 1g  , 1F 2g  , 1F 3g  ,...,  (29) 

1Fgp   

then the primary task reads 

,xFminF
r

1j

k

1i

b

ijminc
ij 

 



 (30) 

1F 1g  , 1F 2g  , 1F 3g  ,..., 

1Fgp  1x >0, 2x >0, 3x >0,..., (31) 

kx >0 

wherein the function restriction Fgt ( pt ,1 ) has the 

shape of a positive polynomials 

,xBminF
)t(Jj

k

1i

b

ijgt
ij 

 



 (32) 

pt ,...,3,2,1
 

Where in: 

J  (0) (1,...,m0) - indexes of individual members 
function Fc 

J (1) (m0 +1 ...,m1) - indexes of individual 
members function fg1 

J (2) (m1 +1, ...,m2) - indexes of individual 
members function Fg2... 

J  (p) (mp-1 +1, ..., mp = r) - indexes of individual 
members function Fgp, 

Here, the functions Fc and Fgp are in the shape 
of a positive polynomial. 

With corresponding dual task, in which the 
primary task is reduced, we can show and express 
the system: 

,
q

B
max)q(Q

p

1t

t

q
r

1j j

j
max

t

j



































  (33) 





)t(Jj

jt q

,p,...,3,2,1t 
    

(34) 





r

1j

j 1q 0bq
r

1j

ijj 
 ,k,1i    (35) 

jq > 0    ,r,1i     (36) 

As we see from (32) see in equation (33) are 
entered all coefficients Bj containing Fc function and 

system function limitations Fgt ( pt ,1 ). Here, 

conditions (35) and (36) are conditions of normality, 
orthogonality and positivity, respectively. 

The further course of the optimization algorithm 
given object is identical to the method of geometric 
programming algorithm without constraints. 
However, the equations (28) to determine the 
optimum number of the primary vector in this case 
is modified to read as follows: 

,
p,1t)t(Jjza

q

)0(JjzaqQ

xB

0t

0j

0j0k

1i

b

ij
ij


















  (37) 

wherein: 

,q
)t(Jj

0j0t 




  
(38) 

3. CALCULATION EXAMPLES 

The general task of optimizing the 
mathematical model of the illustrated two examples 
of the structural unit is related to the optimization of 
dimensions of the welded assembly loaded in 
terms of the welding costs. 

3.1. A simple example 

In the first example, Figure 4 circuit consists of 
two elements: beams (girders) 1 with weld and 
hokder (reliance, where the beam is fixed to a rigid 
bracket welded weld I and II. 

a) Definition of fixed and variable size 

According to the exposed the next procedure 
must be defined first as well as unchangeable 
variable resolution image. Conditions of the 
problem are given constant (unchangeable) size: 
kinds of materials of manufacturers, the free length 
of the beam (units) L and the maximum force F on 
loaded beams. 
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Other dimensions of the assembly are 
independent variables. These dimensions are: 

1xh  2xl  3xt  ,xb 4     (39) 

The value of these dimensions should be so 
determined and optimized to achieve an optimal 

vector )bx,tx,lx,hx(x 000300200100 


 
of 

minimum cost of welding. Fcmin = Fco = min T. 

b) Defining the mathematical form of function 
optimization 

The cost function as a function of optimization 
can be written as, [18-22]. 

,21 TTTT p 
  (40) 

 

Figure 4 - Loaded weldments 

These functions consist of three main 
components (partial charges): Tp - the costs of 
preparation (preparatory operations),T1-welding 
costs,T2 -the cost (price) of material. 

Costs of preparation Tp refer to all the 
necessary technological equipment to perform 
welding operations: welding tools, auxiliary 
equipment for setting beams on the truss in 
position, its tightness and more. These costs will be 
considered constant (do not depend on the 
variables  (x1, x2, x3, and x4). 

Cost of welding operations T1 can be 
determined if you know the elements of these 
costs: 

T11 - the cost of using welding expressed in 
monetary amount per unit of time, which includes 
the cost of amortization and loan repayment 
appliances, the cost of auxiliary equipment 
(depreciation) used in welding, the cost of human 
work (personal income from contributions and 
other), 

Qz - The capacity ie. volume of weld (weld) per 
unit time and, 

Vz - volume of weldment, weld I and II, that the 
example given is calculated as: 

,lhlh
2

1
lh

2

1
VVV 222

2z1z    (41) 

as follows according to figure 4. 

On the basis of these elements can be written 
T1 costs: 

,lh
Q

T
V

Q

T
T 2

z

11
z

z

11
1     (42) 

The cost of materials will be: 

,VTVTT G4z32 
  (43) 

Where in: T3 - material price of weld, T4 - 
material price beam, Vg - volume of the beam is 

calculated as: 

),lb(btVG   (44) 

replacing (41) and (44) to (43) will be: 

),lL(btTlhTT 4
2

32   (45) 

Costs by replacing (42) and (45) in (40) we 
obtain the desired shape optimization function 
(objective function): 

 lhTlh
Q

T
TTF 2

3
2

z

11
pc

 
),lL(btT4 

 (46) 

respectively: 

),lL(btTlhT
Q

T
TT 4

2
3

z

11
p 















 

(47) 

or by (39): 














 43242

2
13

z

11
p xxxTxxT

Q

T
TT

 
,434 xxLT 
 (48) 

the present values of the coefficients T11, Qz, T3, T4 
and L-known of the given task (objective 

optimization). 

c) Defining and setting up a system function 
limitations 

1. Restrictions on the power of the shear in the 
weld [21-23]. 

The actual shear stress in the weld will be, in 

view of the computational of weld 
2

2h
a  , Figure 

4. 











l2h

F

la2

F

A2

F
)x(

z
i

 (49) 

,
xx2

F
d

21






 

For allowable tension shear d , will apply to: 
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21

d
xx2

F


 ),( id x 

  
(50) 

Dividing equation (50) to be: 

,
xx2

F
1

21d 



  (51) 

or as a function of the limits being: 

,1xx
2

F
F

1
2

1
1

d

1g 






 (52) 

Shape of function Fg1 and other function of 
optimization in this form, as will be seen that it is 
suitable for optimization. 

2. Restrictions on the normal stress stretch material 
of  manufacturers, [21,22,24]. 

The actual tension will be less than the 
allowable: 

,
bt

F

A

F
)x( di  


  (53) 

respectively: 

,1
bt

F

d


 

  (54) 

given the limitations of the function being: 








d43d

2g
xx

F

bt

F
F


 

,1
1

4
1

3 


xx
F

d
    (55) 

3. Restrictions related to the practical possibility of  
getting welds 

This limit is expressed as, b ≥ h ,as the beam 
width must be greater than the weld parameter h. It 
follows that: 

14 xx  ,
x

x
1

4

1

  

(56) 

Given the limitations of the function being: 

1
x

x
F

4

1
3g  ,1xxF 1

413g  

  
 (57) 

4. Restrictions on the non-negativity variables xi. 

This limitation is expressed by the function: 

0xF i4g    (58) 

d) A mathematical model of optimization 

According to exposed relations (48), (52), (55), 
(57), (58) for the observed structural structure, the 
mathematical model of optimization will be: 

TFc

,xxLTxxxTxxT
Q

T
min 43443242

2
13

z

11


























  

 (59) 

,

0xF

1xxF

1xx
F

F

1xx
2

F
F

D

i4g

1
413g

1
4

1
3

d
2g

1
2

1
1

d

1g






































 (60) 

4,3,2,1i   

The function (59), the cost of preparation Tp as 
a constant for the observed relation is not taken 
into account since they do not affect the 
mathematical analysis that follows. Once the 
minimum function of the Fc, the same value must 
only add the cost of the preparation, with respect to 
the relation (40). 

By introducing the (constant): 

3
z

11
13 T

Q

T
T 

 

d

a
2

F
F


 ,

F
F

d
b


  (61) 

Relation (59) and (60) are simplified: 

 43L443242
2

113c xxTxxxTxxTminTF   

,1xxFF 1
2

1
1a1g   1xxF 1

413g    (62) 

where in: 

01 x ; 02 x ; 03 x ; 04 x
 

According to the algorithm in chapter 2.2. for 
the case that there are limits, the corresponding 
dual function, considering to (62), will be: 

,qqq
q

1

q

F

q

F

q

T

q

T

q

T
)q(Q

654

65

4321

q
6

q
5

q
4

q

6

q

5

b

q

4

a

q

3

L4

q

2

4

q

1

13























































































  (63) 

after the task has a total of six members: r = 6, and 
three in the Fc and three in the Fg, since there are 
three function limitation (t = 1) each having a single 
member. 

From the condition of normality (35) and (36) 
and  orthogonal forms a system of five equations 
with six unknown: 

,0qqqq)V(

0qqq)IV(

0qqq)III(

0qqq2)II(

1qqq)I(

6532

532

421

641

321











  (64) 



B. Pejović et al ... Optimization of dimension of weldment locus by method of geometric programming 

ZASTITA MATERIJALA 56 (2015) broj 3 361 

Obviously, I equation is a condition of normality 
(Fc function has three members, and therefore 
appears (q1, q2, q3), while the other equation (II-V) 
are orthogonality, in order to variable x1, x2, x3 and 
x4. 

In this equation (II) is determined by x1, the 
equation (III) by x2, the equations (IV) to x3, and the 
equation (V) according to x4, taking into account 
their exponents. Total number of qi (i = 1-6) is 
equal to the number of members of the Fc function 

and the function limitation (3 +1 +1 +1 = 6). 

Equation V by subtracting equation IV, it 
follows that: 

,0q6 
  (65) 

By using the Gaussian algorithm, a simple way 
to show that all of the unknowns can be expressed 
in terms of q1. 

From the second equation it follows that: 

,q2q 14 
 (66) 

as follows from the III: 

,qq 12       (67) 

At the end of the equation I and IV it follows 
that: 

,q1q

q21q

15

13





      

(68) 

Rearranging equation (63), it will be simplified: 

,1FF
q

T

q

T

q

T
)q(Q 654

321

qq
b

q
a

q

3

L4

q

2

4

q

1

13 








































   (69) 

substituting q2, q3, q4, q5, q6, and by (65), (66), (67) 
and (68), equation (69) becomes: 

,FF
q21

T

q

T

q

T
)q(Q 11

111
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b

q2
a
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1
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q
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









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


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




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




















 (70) 

Obviously, the dual function Q (q) is expressed 
in more than q1, which was the goal. 

Logarithmic functions (70) will be: 

 

,Fln)q1(Flnq2
q21

T
ln

q21
q

T
lnq

q

T
lnq)q(Qln

b1a1
1
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1
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

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



























  (71) 

Let 0j0 qq  , 6,1j  , the stationary point of the 

vector in which the Q(q)max=Q0 max, then the same 
count is achieved and maximum functions lnQ(q), 

according to the (71). 

So to calculate the derivative of the function 
lnQ(q) the variable q1 and equates it to zero: 

  ,0)q(Qln
dq

d

1



  (72) 

Given that this is a complex function, for 
simplification to (71), we can introduce shifts: 

b1bb15

a14

1

L4
1

1

L4

1

L4
13
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4
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1113111311

FlnqFlnFln)q1(Q
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
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(73)

 With this shift, the function (71) becomes: 

,QQQQQ)q(Qln 54321 
  (74) 

Derivative of (74) will be: 

 
,QQQQQ

dq

)q(Qlnd
54321

1














   (75) 

Partial derivative of functions (75) for q1 will be 

to (73): 

1
q

T
lnQ),1q(lnTlnQ

1

4
21131 





 (76) 
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Substituting extracts partial functions (76) in 
(75) will be after the arranging, according to (72): 
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     (77) 

Equation (77), after some mathematical 
operations can be summarized as: 

,0
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FTT
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b
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aL413
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It follows that: 
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  (79) 

and finally, solving to 01 qq  : 

,

TT
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F

T
2

1
q

413

b

a

L4
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


   (80) 

Taking into account (65), (66), (67), (68) and 
(80) it follows that: 
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Accordingly, an optimal dual vector has a 
component: 

),q;q;q;q;q;q(q 6050403020100    (82) 

By setting the calculated optimum dual 

component vectors 0q  (82) corresponding to a 

maximum of the dual function of (25) 

 0max Q)q(Qmax)q(Q
 

),q;q;q;q;q;q(Q 605040302010
  (83)

 receives the value of the minimum function 
optimization, ie.: 

,Q)q(Q)q(QmaxFminF 00c0c   (84) 

Based on Fc0, calculated from equation (62) to 
(37) components of the optimal vector of the 
system: 
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(85)

 

From I and IV of the equation it follows that: 

,
FT

qQ
x

a13
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


   (86) 

VI  according to the equation it follows that: 

,1040 xx 
 (87)

 From equation IV will be: 

,
x

F
x

10

a
20 

  (88)

 

Also, from the equation V will be: 

,
x

F

x

F
x

10

b

40

b
30     (89)

 

The equations of system (II), (III), (VI), which at 
present are not used, can be used to control the 
results obtained with respect to all of the system 
equation, must be satisfied. 

For example, the observed arc welding beam 
bracket, which are made of carbon structural steel 
(0.25% C), calculated constants: 

 The capacity of the welding 
s

cm
05,0Q

3

z   

 The price of basic material 
34

cm

CENT
4,1T   

 The price of electrode material 
33

cm

CENT
7,5T   

 The cost of welding device 
s

CENT
65,0T11  

Allowable stress of the base material tensile 

2d
cm

N
10000  

Allowable stress of the base metal shear 

2d
cm

N
5000  

 Maximum power load beam N20000F   

 Free length of  the beam cm20L   

Preparation costs 9,73Tp  CENT  

Constant value to (61) will be: 

7,185,6
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T
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T
T 3
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The components of the dual optimum vector to 
be (80), or according to (81): 
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(90) 

The optimum dual vector of (X) will be: 
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)0;7885,0;423,0;577,0;2115,0;2115,0(

)q;q;q;q;q;q(q 6050403020100 

 (91) 

The optimal values of the dual function Q0 to 

(69) will be: 
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    (92)

 

Substituting the values (91) to (92) shall be 
final: 
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where the optimal value of the dual function to 
function optimization: 

4,96)q(QQF 000c  ,CENT  (94) 

On the basis of the value (86), (87) from (88), 
(89) are determined by the desired optimum vector 

0x : 

386,0
828,27,18

2115,04,96

FT

qQ
x

a13
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


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


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386,0xx 1040   cm 
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828,2

x

F
x
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a
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 cm   (95) 

181,5
386,0

2

x

F
x

10

b
30 

 cm 

Control of the results can be performed 
according to the equations II, III and VI, of system 
(85), considering that the same are not used.  

Now is the optimal primary vector completely 
determined: 

),0,3865,181;7,367;,386;0()x;x;x;x(q 403020100 

 (96) 

When an optimal vector (96), an optimum is 
achieved Fc0=minFc according to (62): 

 403020420
2

10130c xxxTxxTF
 

,xxT 4030L4 
 (97) 

Substituting (95) into (97) will be: 

386,0181,5326,74,1326,7386,07,18F 2
c 

 
,CENT4,96386,0181,58,27   (98) 

As might be expected, given (93).  

In calculation, minimal error ocurred because of 
rounding of numbers (four digits).  

From the above follows that the optimal values 
of the dimensions of the welded joint observed: 

86,3xh 100  mm , 26,73xl 200  mm ,  

81,51xt 300  mm , 86,3xb 400  mm . 

One can easily show that all the boundary 
conditions (60) are fully met. 

3.2. A more complex example 

As a more complex problem let's take the same 
example of the picture 4, with the difference that 
we will introduce two new constraints: 

1. In view of the specific construction reasons 
there is a limit of geometric measure  

,bt     (99) 

2. Restrictions pertaining to minimum width 
dimension h1min=x1min, below show that it is not 
possible to have technological realization of 
cheating: 

min1xh  ,dx min1    (100) 

For x1min, a constant value is  introduced, 
which may relate, for example to the minimum 
diameter of the applied welding electrodes, [24, 
25].  

Accordingly function optimization (goal) will be 
to (48): 

,44
2

13 btlTbtlTlhTFc 
 (101) 

The first three functions to limit (62), will also be 
as in the first example: 

1xxFF 1
2

1
1a1g  

 

,1xxFF 1
4

1
3b2g    (102) 

1xxF 1
413g    

Due to (99) and (100), the following two new 
constraints will be: 

1xxF 1
345g    ,1xdF 1

14g     (103) 

Obviously, with this, we have maintained the earlier 

marks geometric size hx1  lx2  tx 3 bx4  . 

All restrictions on the functions here have only 
one member, and according to chapter 2.2. 

41 qd   , 52 qd  , 63 qd  , 74 qd  , 85 qd 
 

For this case, an appropriate dual function, as 
the increased number of functions of limitation, will 
be more complex: 
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From the conditions of normality and ortho-
gonality (20,21), we obtain the system of equations 
for determining the optimal dual vectors: 

0qqqqq

0qqqq

0qqq

0qqqq2

1qqq

86532

8532

421

7641

321











    (105) 

Apparently solving the system by (105) cannot 
act like in the first example, because it is obtained 
by a system of five linear equations with eight 
unknowns. 

Size and parameters in the equation (104) will 
be in this example: 

33
z

11
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T
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

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2
10000

20000F
F

d
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 2cm 3,0d 
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There is the adopted size d = 3 mm, in view of 
the minimum diameter of the electrode for carrying 
out the welding operation. 

3.2.1. Analysis of the level of complexity 

For the simple case when the number of 
equations (26) is equal to the number of unknown 
values (dual variables) of the system is obtained 

unambiguously (a) solution )q(q 0j0  . It is 

possible, however, and in the other (more complex) 
case, with the system (25a), (26),  that the number 
of unknown size qj is greater than the number of 
available equations. Then we cannot talk about the 

optimal vector 0q  with regard to q, because q is 

multifacted, and it has  many infinitely more res-

pective solutions and the optimal solution 0q  which 

achieve optimum Q0, obtained by maximizing the 
dual function Q (q), ie. solving the optimal task 
(dual task optimization) defined system (25a). 
When this is used in some of the analytical met-
hods, for example, non-linear programming method 
of [13,15,7,12]. Here is the procedure of 
optimization easier, because all constraints are of 
linear shape.  

Other (more complex) case is associated with 
the degree of complexity, which is defined by the 
equation: 

),1k(rs   (106) 

where r - number of minimal positive polynomials 
and k'-size related to the number of independent 
variables in the above polynomial whose reality 
defines the rank of a matrix built by the exponents 
bij in the polynomial (9), [16,25,26]. For the case 
that s = 0, it does not solve the task of optimizing 
the dual function Q (q) but the 0q is determined 
unambiguously by the system (26). 

For s=1 (the first example), as shown by the 

optimum solution 0q  is obtained by maximizing the 

dual function Q (q). 

Considering the above, the exponent for matri-
ces another example, the system is determined by 
the equation (105) wherein the first equation of the 
system is not taken into account: 
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 (107) 

Rank of the matrix (107), using matrices and 
using matrix properties (operations with matrices) 
will be: 
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  (108) 

The degree of complexity is defined as 

,3)14(8)1k(rs 
   (109) 

Here r is the number of minimizing polynomials, 
k'-size related to the number of independent 
variables in a positive polynomial (9) whose value 
defines the rank of the matrix formed by the 
exponents in the polynomial (9). Given that  s > 0, 

the optimal dual vector 0q can be obtained from the 

equation system (9), since the number of these 
equations is less than the number of unknown 

values 0j qq

 . Then 0q  is obtained by maximizing 

the dual function Q (q) using one of the analytical 
methods, for example, non-linear programming 
method [13-15,12]. 

3.2.2. Solving problems by using nonlinear 
programming 

Substituting known parameters to a function 
(104), using an appropriate program by using met-
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hod of nonlinear programming, to obtain the 
optimal dual component vectors: 

212,0q10  212,0q20  576,0q30   424,0q40 
 

788,0q50 
 

0q60 
  

0q70  0q80 
 

That is: 

)0;0;0;788,0;424,0;576,0;212,0;212,0(q0   

These values are obtained considering to 
Q(q)max . 

By entering the calculated values of the compo-

nents 0q  (X), the peak corresponding dual function 

(104) will be: 

 0max Q)q(Qmax)q(Q  

6,96)q;q;q;q;q;q;q;q(Q 8070605040302010  CENT  

Thus the minimum value of function 
optimization will be: 

6,96Q)q(Q)q(QmaxFminF 00c0c  CENT  

Basis 6,960 cF
 
calculated from equation (97) 

components of the optimal vector according to 
equation (37): 
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The resulting system of linear equations (110) 
is solved  relatively easily. 

From second and third equations of the system 
(110) that the 
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From here it is 

361,7
576,04,1

8,27212,0

qT

Tq
x

304

l420
20 









  

Now, from the first equation of the system (110) 
that follows: 
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The fourth equation of system can be used to 

check the results: 2010a xxF   

Then from third equation we have: 

41,1x
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576,06,96

T

qQ
x 40

L4

300
30 
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  

From this equation it follows that 4030 xx 
 

The second equation of system may also be 
used to check the results, given that sizes are 
known in the equations. The same applies to the 
fifth equation system,  

2xxF 4030b 
 

Thus the optimal size for a more complicated 
case of optimization will be:  

mm858,3hx 010  , mm61,73lx 020  , 

mm10,14tx 030  , mm10,14bx 040   

4. CONCLUSION 

A method of programming is displayed in a 
geometrical operation, used principally in the 
production of various technologies. It is shown that 
the method under certain circumstances, is used in 
the field of design. Special methods efficiency is 
achieved when the associated technology and 
construction resistance are shown in the examples. 

Many of the functions encountered in practice, 
certain mathematical transformations, can be redu-
ced to positive polynomials and applied  to the 
present model. 

The model presented in the paper through the 
course of the algorithm can be considered as a 
more general and can be applied in many areas of 
design where it can be taken into account within 
technologies, while it is possible to apply various 
technical and economic criteria in optimization. All 
amounts to structural and technological solutions in 
the process of establishing the optimal project to 
determine the best possible. Limit function can be 
different both in number and shape. 

Application of geometric programming is pos-
sible with different functions of optimization and 
constraints as linear and nonlinear. Complex prob-
lems are present in this system of linear equations 
that are relatively easy to solve , which is an ad-
vantage compared to other methods  (for example, 
simplex method, and a gradient). The solution is 
always obtained directly without optimal search 
area. Special attention when applying the method 
of geometric programming should be processed 
when the limit function contains more than one 
member. Then the appropriate member of the 
effectiveness of a dual function  also includes more 
members. 

In most problems, in the end here occur more 
equations than necessary. This allows you to 
monitor and control the results with respect to all 
equations of the system that  must be met. Also, 
control can be exercised towards equality minFc = 
maxQ. 
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Like any method of optimization and geometric 
programming method has its drawbacks. 

The method can not be applied to cases where 
the optimization function and constraints are posi-
tive polynomials ( when it appears in the polyno-
mial minus sign) . It should be noted that the tech-
nical practices  in such cases are generally rare. 

Finally, it should be pointed out that  modern 
optimization methods for efficient implementation 
require multidisciplinary knowledge required of 
different fields: technology, design,construction, 
economics, mathematical analysis, mathematical 
programming. These are probably the main rea-
sons why we are in technical practice insufficiently 
engaged it cannot as well be justified. 
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IZVOD 

OPTIMIZACIJA DIMENZIJA OPTEREĆENOG ZAVARENOG SKLOPA METODOM 
GEOMETRIJSKOG PROGRAMIRANJA 

U radu  je na primeru jednog karakterističnog opterećenog zavarenog sklopa izvršena optimizacija 
njegovih dimenzija sa aspekta troškova zavarivanja. Pri ovome, postavljen je matematički model 
optimizacije sa finkcijama ograničenja koje pri projektovanju moraju uzeti u obzir tehnolog i konstruktor. 

Za rešavanje postavljenog problema, predložen je metod geometrijskog programiranja koji je detaljno 
razrađen u radu u obliku algoritma pogodnog za primenu.Na taj način optimizacioni ili primarni zadatak, 
sveo se na dualni zadatak preko odgovarajuće funkcije, koji se znatno lakše rešava. 

Metod je ilustrovan na jednom računskom praktičnom primeru sa različitim brojem funkcija ograničenja. 
Pokazano je da se za slučaj manjeg stepena složenosti do rešenja može doći maksimizacijom 
odgovarajuće dualne funkcije primenom matematičke analize. Za slučaj većeg stepena složenosti, 
neophodna je primena neke od metoda nelinearnog programiranja. U ovom slučaju rešenje problema je 
pojednostavljeno zbog svođenja linerane jednačine. 

Ključne riječi: zavarene strukture po abecednom redosledu, matematički model optimizacije, funkcija 
troškova, karakteristična ograničenja, geometrijsko programiranje, pozitivni polinomi, dvostruka funkcija.  
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